
 
     Fermi National Accelerator Laboratory 

 
FERMILAB-PUB-06-093-AD  (2006) 

 
 
 
 

Determination of linear optics functions  
from turn-by-turn data 

 
 

Y.Alexahin, E.Gianfelice-Wendt 
 
 

Fermi National Accelerator Laboratory 
P.O. Box 500, Batavia, Illinois 60510 

 
 
 
 

         Abstract 
A method for evaluation of coupled optics functions, detection of strong perturbing 

elements, determination of BPM calibration errors and tilts using turn-by-turn (TBT) data is 
presented as well as the new version of the Hamiltonian perturbation theory of betatron oscillations 
the method is based upon. An example of application of the considered method to the Tevatron is 
given. 

 

(Submitted to Physical Review Special Topics – Accelerators and Beams) 
 
 
 
 
 
 
 

May 2, 2006 
 
 

PACS code: 29.27.-a 

� 



 2 

1 INTRODUCTION 

Detail knowledge of the beam optics is crucial for successful performance of an accelerator. It is 
important to have tools for measurement and correction of beta-beating, coupling, for detection of 
sources of optics imperfections. 
 There are a number of methods to address these problems which can be classified into two 
major categories. The first one comprises methods based on driving the closed orbit motion 
(differential orbits [1], AC dipole [2]), while the others exploit free betatron oscillations excited by a 
kicker or injection errors.  
 The method considered in the present paper belongs to the second category and involves 
analysis of turn-by-turn beam position into normal modes of betatron oscillations. To do this we may 
Fourier analyze the data or try to fit it with a superposition of a limited number of harmonic oscillators. 
The second approach with simultaneous use of data from all available BPMs leads to the so-called 
Independent Component Analysis [3]. In the case of weakly coupled motion and low level of noise the 
Fourier analysis which we use here is no less efficient but significantly faster. 
 An important question is what representations of lattice functions to use. Many authors [4, 5, 6] 
employ the Edwards-Teng parameterization of the transfer matrix [7]. However, the Mais-Ripken 
parameterization [8] is more suitable for analysis of TBT data since it explicitly deals with the normal 
modes of coupled oscillations. We use the language of the transfer matrix eigenvectors which are 
closely related to the Mais-Ripken lattice functions (see e.g. Ref.[9]) and treat the expansion 
coefficients as new dynamic variables (normal forms) [10, 11]. In Section 2 we briefly remind the 
necessary formalism. 
 In principle, no a priori conception of the machine optics is necessary for analysis of TBT data. 
In Section 3 we discuss how to perform the Model Independent Analysis, though do not use it directly 
for practical calculations.  
 In practice there is always some ideal (design) optics which can be used as the starting point, 
the goals of the measurements being to find deviations from the ideal optics (e.g. beta-beating, “tilt” of 
the normal modes), detect the sources of perturbation, evaluate their strength and necessary changes in 
correction circuits to compensate for these perturbations.  
 These goals require different conditions of the measurements. It is easier to search for the optics 
imperfections and their sources when the tunes are sufficiently far from resonance values, whereas for 
evaluation of the global effects (e.g. closest tune approach which is essentially the absolute value of the 
difference resonance driving term) it is better to put the tunes close to the resonance. 
 In the near-resonance case the relation between the source strength and the observable effects of 
perturbation is nonlinear, so that the higher-order perturbation theory should be invoked. We put the 
details of such theory (based on the general Hamiltonian perturbation theory as presented in Ref.[11]) 
in Appendix A. 
 Application of the developed methods, including evaluation of possible BPM tilts and 
calibration errors is discussed in Section 4 and exemplified by the case of the Tevatron collision optics. 
 Error estimates are given in Appendices B and C. It is shown that in the presence of random 
noise the tune error decreases with the number of turns N only as 1/N3/2. Appendix B presents also an 
improved interpolation formula for precise tune determination using discrete Fourier transform. 
 
2 DESCRIPTION OF COUPLED LINEAR MOTION 

First let us introduce notation conventions: underlined characters will denote (column) phase space 
vectors, upright capital letters designate matrices, bilinear forms of dynamic variables (such as 
Hamiltonian) will be denoted in cursive. 
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 We choose the generalized azimuth θ =s/R as independent variable (R and s being the machine 
average radius and the path length), and  
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as the phase space vector, the prime denotes differentiation by s (we will use the dot for differentiation 
by θ) and superscript T means transposition. 
 In linear Hamiltonian systems considered in the present report the Hamiltonian is a bilinear 
function of dynamic variables 
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 The phase space vectors at two locations θ 1, θ 2 are related via transfer matrix M(θ 2, θ 1): 
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which satisfies the equation 
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It is easy to verify by differentiation that the transfer matrix satisfies the symplecticity condition: 

MTSM=S,          (2.7) 

2.1 Eigenvectors of the transfer matrix 

Of special importance is the eigensystem of  the 1-turn transfer matrix (from θ  to θ +2π)  
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The eigenvalues λn form reciprocal pairs [9] and, outside the stopbands of half-integer and sum 
resonances, lie on a unit circle. We will numerate and arrange them in the following order: 
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Equation (2.8) defines an eigenvector up to a (complex) constant. It is natural (but by no means 
necessary) to impose the condition  

∗
− = nn �� ,  n =1, 2.          (2.10) 

To write down the orthonormality condition let us build a matrix, V, using the eigenvectors as its 
columns: 
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where nk , k =1,…, 4 is the sequence 1, -1, 2, -2. Now we can write the orthonormality condition as 
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SVSV µiT −= ,         (2.12) 

where the normalization constant µ must be real owing to condition (2.10), our choice being µ = 2. 
 This condition still leaves the phases of eigenvectors �n undefined and we can use this freedom 
to our best advantage. First we require that at the origin (θ  = 0) the spatial components (�1)1 and (�2)3 
be real. To define the phases at other locations let us notice that by propagating an eigenvector from θ 1 
to θ 2 with transfer matrix M(θ 2, θ 1) we get the eigenvector at θ 2 which corresponds to the same 
eigenvalue. Multiplying by exponentials exp(-iQnθ ) we can make the eigenvectors 2π-periodic: 
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or, in the matrix form, 
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With this convention the transfer matrix can be expressed via the eigenvectors as 
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 Let us note for later reference that by differentiating eq.(2.14) we can obtain a differential 
equation for matrix V, 

QVVSHV 0 i−=� ,         (2.17) 
where Q = diag(Q1, -Q1, Q2, -Q2). 
 
2.2 Complex canonical variables (normal forms) 

The phase space vector (2.1) can be expanded in eigenvectors with coefficients satisfying the relations 
2,1, == ∗

− naa nn  by virtue of condition (2.10). In the matrix form the expansion reads 
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where we introduced vector of coefficients Taaaaa ),,,( 2211
∗∗= which may be regarded as a new 

phase space vector [10, 11]. The inverse transformation is given by 
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 According to eqs.(2.14) and (2.18) coefficients an propagate as 
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so that the introduced variables are in the normal form.  
 Though matrix V is not symplectic when µ  ≠ i, transformation (2.18) is still canonical in the 
sense that coefficients ∗

nn aa ,  form canonical pairs satisfying Hamilton’s equations 
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with Hamiltonian 
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 Let us show that the equations for an retain the Hamiltonian form (2.21) even in the presence of 
perturbations when the transfer matrix M generated by unperturbed Hamiltonian �0 and its 
eigenvectors no longer describe the exact motion but still are used in transformation (2.18). Namely, let 
the Hamiltonian 10),( ��� +=θz  be a sum of unperturbed part �0 given by eq.(2.2) and 
perturbation �1 (which may contain terms of higher order in z as well). 
 Differentiating eq.(2.18) and using the inverse of eq.(2.12) and eq.(2.17) we get 
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so that ∗
nn aa ,  are still canonical variables and the transformed Hamiltonian is �  =��0 +��1 with 

unperturbed part �0 given by eq.(2.22) and 
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 Relations (2.18, 2.21-24) are general ones and can be used in analysis of nonlinear systems as 
well; the choice of normalization constant µ being the matter of personal preference. For the following 
we set µ = 2. 

2.3 Uncoupled lattice functions 

In the absence of coupling the transfer matrix splits into a direct sum of 2×2 matrices which 
eigenvectors can be parameterized as follows: 
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where φn=ϕn-Qnθ  is periodic phase function, αn and βn are the Twiss functions for mode n (in the 
following we assume mode 1 to be nearly horizontal and mode 2 to be nearly vertical). 
 For the transfer matrix we have the well known expression which we cite for later reference: 
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where ∆ϕ n =ϕ n
(k)-ϕ n

(j), superscripts j, k mark locations at which the lattice functions were taken. 
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2.4 Coupled lattice functions 

In the case of coupled motion we use the modification of Mais-Ripken parameterization which was 
proposed by Lebedev and Bogacz1 (see Ref.[12]): 
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2.5 Edwards-Teng parameterization 

For the sake of completeness let us mention the Edwards-Teng parameterization which historically 
appeared first [7]. At every location in the ring the 1-turn transfer matrix M(θ +2π,θ) can be 
transformed into the block-diagonal form by similarity transformation 1RMRM

~ −= with matrix 
R=R(θ) of the type 
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where I is 2×2 identity matrix and D=D(θ) is some 2×2 symplectic matrix. 
 The eigenvectors of the decoupled transfer matrix M~  are direct sums �1 ⊕ 0, 0 ⊕ �2 and their 
complex conjugates with �n being of the form (2.25) and 0 = (0, 0)T.  
 Lebedev and Bogacz [12] established relations between the Edwards-Teng and Mais-Ripken 
lattice functions. Namely, they showed that the phase advances coincide (ϕ 1 = ϕ x1, ϕ 2 = ϕ y2), while 
the β- functions are related as 
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For the “symplectic rotation” angle Φ they found 

ω=Φ2sin           (2.30) 

 Though many authors [4, 5, 6] employ the Edwards-Teng parameterization, we prefer to work 
with the Mais-Ripken functions since they are immediately related to particle coordinates. 
 
3 MODEL-INDEPENDENT ANALYSIS OF TBT DATA 

In principle the lattice functions can be found from TBT data without resorting to the perturbation 
analysis, so that no a priori conception of the machine optics is necessary.  
 First of all, the normal mode tunes Q1, Q2 should be found using continuous Fourier transform 
or interpolated FFT as discussed in Appendix B (data from one BPM per plane is usually sufficient). 
To proceed further let us note that the generalized azimuth θ =s/R plays two roles: it marks locations 

                                                 
1 An important step made by Lebedev and Bogacz was to show explicitly how Mais-Ripken’s γ-functions can be expressed 
via α- and β- functions. They introduced an auxiliary function, denoted here as ω , which makes the expressions much 
simpler. 
 



 7 

around the ring (0 ≤ θ 0 <2π) and serves as continuously advancing independent variable taking value 
θ  = θ 0 + 2π(k - 1) on kth turn at location θ 0.  
 Taking into account eqs.(2.18) and (2.20) we expect the turn-by-turn beam position at jth BPM 
location to be given by 
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The vertical displacement can be expressed analogously via the 3rd components of the eigenvectors.  
  The Fourier components of the beam position (3.1) at the normal mode tunes are immediately 
related to the spatial components of eigenvectors: 
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where Nh and N� are the numbers of horizontal and vertical BPMs respectively. 
 Recalling definitions (2.11) and (2.27) we get for the horizontal Mais-Ripken optics functions at 
horizontal BPMs 
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and analogously for the vertical functions at vertical BPMs.  
 We may apply formulas (3.2), (3.3) to the real data (error estimates are given in Appendix C). 
The remaining question is how to find the invariant amplitudes |am0|, the argument of am0 not being an 
issue since the betatron phase is defined up to a constant addend. 

3.1 Determination of the invariant amplitudes 

The difficulty is that the invariant amplitude of oscillations is determined not only by the kick strength 
but also by the optics functions yet to be found. Provided the BPMs sample the ring densely enough 
there is a principal solution which can be easier explained in the case of uncoupled lattice. 
 In the uncoupled case the tunes (which are already known) can be expressed via the integrals of 
inverse β-functions. We can approximate the integrals by the sums (horizontal plane for instance) 
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where pj are weight coefficients [pj =R(θ j+1-θ j-1)/2 by the trapezoid rule], and find the invariant 
amplitudes. Probably this method can be generalized on the case of coupled motion as well. However, 
it is not practical since: i) BPMs usually do not sample the ring sufficiently well, ii) the sum in eq.(3.4) 
is dominated by BPMs at low beta locations for which the signal to noise ratio is the lowest. 

3.2 5-BPM algorithm 

It is possible to circumvent the problem of determination of the invariant amplitudes if there is a region 
of the ring with known focusing properties. In such region β-functions can be found from the measured 
phase advances. 
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 Since the focusing properties of the lattice assumed to be known we can calculate the transfer 
matrix between the BPMs, in particular its M12 and M34 elements which contain only β- and phase 
functions for the same plane, e.g. 
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For NBPM in one plane we have NBPM(NBPM -1)/2 equations while the number of unknowns is 2 NBPM 
(βx1 and βx2 or βy1 and βy2 at each BPM). Correspondingly, the minimum number of BPMs per plane 
needed is NBPM = 5. With β-functions at these 5 BPMs found we may use the first of eqs.(3.3) to 
evaluate the invariant amplitudes and then find β-functions in the rest of the ring. 
 This method requires data for both normal modes and is prone to errors, especially for the 
cross-plane functions. 
 
4 PERTURBATION APPROACH 

In practice there is always some ideal (design) optics which can be used as the first approximation. The 
goal of optics measurements is not only to find actual (perturbed) optics functions but also to detect the 
sources of perturbation and evaluate necessary changes in correction circuits. The problem may be 
complicated by BPM tilts and calibration errors. To unwind all these effects we have to resort to the 
method of successive approximations. 
 First of all let us establish relations between sources of perturbation and observable effects on 
beta-functions and phase advances assuming the perturbed motion to be stable (which requires the 
tunes to lie outside the stopbands of half-integer and sum resonances). 
 We may still use eq.(2.18) with the ideal eigenvectors but treat it now just as a linear 
transformation of variables [10]. Thus defined vector a is a linear superposition of the “true” normal 
forms A: 
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(it is more convenient to define the direct transformation as A = T a in order to make the analysis 
presented in Appendix A simpler). Given the ideal optics functions and the transformation matrix T we 
can find the new eigenvectors matrix as  
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and, eventually, the perturbed lattice functions.  
 Appendix A describes a recipe (based on the Lie-transform theory) for finding T for a given 
perturbing Hamiltonian.  Though our system is linear, the observable effects of perturbation (described 
by matrix T) are nonlinear in the perturbing element strength.  

4.1 Uncoupled optics functions and BPM calibration 

Let us first consider an uncoupled lattice. To determine the invariant amplitudes Am0 we can use the 
fact that the average value of the inverse β-function over many periods of betatron oscillations is not 
sensitive to beta-beating. Retaining in the sum only BPMs in regular sections (such as arcs) we get a 
rough estimate for the amplitude 

��≈
j xjj jx

x
QX

A
2

0

2
0

|)(|

1
/

)(
1

||
θβ

      (4.3) 



 9 

and, with the help of eqs.(3.3), for the optics functions. 
 Figure 1 presents thus found main beta-functions with the Tevatron collision optics as functions 
of the distance from F18 marker2. The tunes were intentionally shifted close to half-integer values 
Qx = 20.518, Qy = 20.514 which resulted in strong beta-beating. 
 Following the lead of section 3.2 it is possible to obtain a more precise estimate of the invariant 
amplitude provided there are regions free of large focusing perturbations. Now that the optics is 
uncoupled we need only 3 BPMs per plane to calculate the β-functions from the measured phase 
advances as was first noted by P. Castro-Garcia [13]. 
 Taking the ideal transfer matrix between BPMs and measured phase advances we obtain 
equations for the product of β-functions [confer eq.(2.26)]: 
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Applying this relation to pairs in a group of three BPMs we find the solution (provided the phase 
advance between any two of BPMs is not a multiple of π): 
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where superscripts denote BPM position in the group (from the right to the left). 
 This algorithm (which we will refer to as the 3-BPM algorithm) has in fact a greater potential: it 
permits to check if a particular region is really free of focusing perturbations and find BPM calibration 
errors. 
 Moving the 3-BPM window across a particular BPM we obtain three values, β(n), n = 1, 2, 3,  
for β-function at its location;  the scatter in these values tells us whether this BPM belongs to a 

                                                 
2 Locations in the Tevatron are labeled in the proton motion direction with a letter denoting the sector (A-F) and two 
numbers, the first one (0-4) being the “house” and the second one being the position in it. Interaction points are in the 
beginning of sectors B and D, the horizontal kicker used in TBT measurements is located at F17 which explains the choice 
of MF18 as the starting point in calculations. 

FIG. 1 (color).  Measured and design Tevatron collision optics functions with tunes shifted to half-integer 
values  vs. distance from F18 marker: left - βx at horizontal BPMs, right - βy at vertical BPMs  
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perturbation-free region. Fig. 2 shows the ratios of thus obtained values of the horizontal β-function to 
the approximate βx values derived from amplitude of oscillations with the help of eqs.(3.3) and (4.3). One 
can see strong effect of focusing perturbations in the interaction regions and other straight sections.  
 In the perturbation-free regions where all three β(n) values for a given BPM are close to the 
average 
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as a relative calibration factor3 (defined as r = xactual / xreported).  
 Now we can get a better estimate for the invariant amplitudes by requiring the average factors 
<r> over “good” BPMs to be equal to 1. In the considered example of the Tevatron collision optics 
these average values happened to be <rx>=1.014, <ry>=1.012 proving the validity of estimate (4.3) in 
the presence of strong beta-beating.  
 The 3-BPM algorithm fails in the regions containing sources of focusing perturbations, still we 
may try to separate the effects of focusing and calibration errors. 
 Let us develop the first of eqs.(3.2) using eq.(A.23) and introducing calibration factors: 
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3 It should be noted that by using only TBT information it is not possible to determine absolute calibration factors. 

FIG. 3 (Color).  Real and imaginary  parts of 
function wx describing horizontal beta-beating seen 
in Fig.1a with fudging of horizontal BPM 
calibration factors (blue triangles and red squares) 
and before fudging (dashed lines). 
 

FIG. 2 (Color). Ratio of horizontal β-function values 
derived from phase advances to those inferred from 
amplitude of oscillations: blue squares - when the 
particular BPM is on the left side, green triangles – in 
the center, red circles – on the right side of the group. 
The count starts from F19 HBPM. 
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our goal being to find function wx [relation of its absolute value to ux is given in eq.(A.23)] and 
calibration errors.  
 Usually there are only few elements with strong focusing errors, let us assume that between two 
adjacent BPMs (say, j-th and (j +1)-th) there is no such elements. Then according to eq.(A.20) Cj, Sj 
have constant values at these BPMs which can be found as functions of calibration factors rj, rj+1.  
 Thus determined Cj, Sj (index j denotes the interval between j-th and (j +1)-th BPMs) may 
oscillate strongly from one interval to another. By fudging the calibration factors functions Cj, Sj can be 
made to vary more smoothly over a chosen range even if it includes perturbing elements.  
 Figure 3 shows function exp(2iQxθ )⋅wx(θ ) calculated with all BPM calibration factors set to 1 
(dashed lines) and with calibration factors found with either the 3-BPM algorithm (in perturbation-free 
regions) or the described above fudging procedure (triangles and squares). The largest calibration errors 
were found for B0 collision point monitors (HB0U and HB0D): r34 = 0.964, r35 = 1.055, and for HD12 
monitor downstream of D0: r76 = 1.075. It can be seen that the fudging reduces oscillations in |wx| while 
preserving its abrupt changes indicating the position of perturbing elements. 

4.2 Coupled optics functions 

For simplicity we assume the ideal lattice to be uncoupled and consider coupling as a perturbation. 
 Let us work out eqs.(3.2) using transformation matrix (A.37) and allowing for BPM tilts. If the 
first normal mode was excited we have for the Fourier components of the TBT beam positions  
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where 22 |||| +− −= uuκ , function ux includes effect of focusing errors (see section A.2) as well as 
second-order coupling effect (w2x/2) given by eq.(A.34). BPM tilt angle χ is considered positive for tilt 
from x to y.  
 If the second mode was excited we analogously have 
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  (4.10) 

 Before discussing the algorithm for finding u± let us note that in eqs. (4.9), (4.10) we neglected 
higher order terms in ux,y but retained those in u±  (represented by κ). Higher order terms in u± may be 
significant only when the tunes are close to a coupling resonance (sum and/or difference), but then 
these functions are nearly constant around the ring by the absolute value. Therefore κ can always be 
assumed constant. 
 Again, the first step is to find the invariant amplitudes Am0.  To get rid of the effect of beta-
beating we can use eq.(4.3) and obtain an estimate for cosκ⋅ Am0. Dividing by this product eqs.(4.9) or 
eqs.(4.10) (depending on which mode has been excited) we get for each BPM in the orthogonal plane 
just one equation for two unknowns: κκ /tan±± = uz . Therefore some additional relation is necessary.  
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 As shown in section A.4, in regions free of couplers the first-order generating functions behave 
as w±(θ ) = const × exp[-i(Qx0±Qy0)θ ]. Assuming such dependence for z± in the interval between two 
BPMs of the same orientation4 we get two additional equations allowing to find z± at these BPMs and 
in the interval between them. Inverting the definition of z± and using eq.(A.38) we obtain the first-order 
generating functions  

)3/||||1( 22
�� zzzw ±= ±±±        (4.11) 

 Figure 4 presents functions exp[i(Qx±Qy)θ ]⋅w±(θ ) found from the first (horizontal) mode seen 
in the vertical BPMs and the second (vertical) mode in the horizontal BPMs in the case of the Tevatron 
collision optics at nominal tunes Qx = 20.585, Qy = 20.575. Good agreement of the two sets of values 
demonstrates reliability of the method. 
 By differentiating the generating functions we can find the distribution functions of couplers 
defined in eq.(A.27): 

)(2)( 00 θ
θ

θ θθ
±

−
±

±±= we
d
d

ieC iQiQ ,       (4.12) 

where Q0± = Qx0 ± Qy0. Jumps in w± correspond to the presence of strong couplers. The largest jump in 
Figs. 4 occurs at approximately 800m from the origin and corresponds to two SQA0 skew quadrupoles 
used for coupling compensation. Another jump happens downstream of D0 at about 4100m and was 
traced to a tilt of D16 defocusing quadrupole. 
 The knowledge of C± , w±  (and κ) permits to calculate the second order functions w2x,y [see 
eqs.(A.34)] and separate the effects of focusing errors and coupling on beta-beating. Figure 5 shows the 
absolute values of functions wx,y as determined from data (and presented in Fig.3 for the horizontal 
plane) and with the coupling contribution subtracted. One can see that the coupling contribution 
reaches 20% and in its absence the amplitude of beta-beating would have been approximately equal in 
both planes. 

                                                 
4 It is easy to see that two BPMs of different orientation (one horizontal and one vertical) can not be used even when data 
for both normal modes is available since (after z+ exclusion) the resulting equation, exp(2iφy0) z- + exp(2iφx0) z-

* = r.h.s., has 
zero determinant.  

FIG. 4 (Color).  Real and imaginary parts of functions w+ (left) and w- (right) describing linear coupling 
found from the first (horizontal) mode seen in the vertical BPMs (blue and red) and the second mode seen 
in the horizontal BPMs (cyan and magenta) in the case of the Tevatron collision optics. 
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4.3 Global coupling coefficients 

Let n± be the closest integers to the sum and difference 
of the tunes, n± = Round(Qx ± Qy). The resonance 
driving terms (which can also be called the global 
coupling coefficients) are the corresponding Fourier 
harmonics of the couplers distribution: 

� ±±
±≡

π
θ θ

π

2

0
2
1

dCec in .   (4.13) 

Of these two values c- bears more practical importance 
since its absolute value determines the closest tune 
approach (see Appendix D). Substitution of eq.(4.12) 
into eq.(4.13) gives the relation between the coupling 
coefficients and generating functions: 
 

.)(2 )(
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2

0

0 ±± −
±±±±

±±
± −−=

−
−= �

nin wnQdwe
nQ

c
π

θ θ
π

    (4.14) 

This relation requires TBT data acquisition from all BPMs around the ring which may be too lengthy a 
process for practical application of this method.  
 The solution follows from the observation made in Appendix A [see eq.(A.31)] that close to the 
resonance Qx ± Qy = n± the corresponding generating function is dominated by the resonance harmonic, 
w±(θ )≈const×exp(-in±θ ), so that any part of the ring is representative of the whole. Working close to a 
resonance also reduces error due to BPM tilts. However, there is a minor complications since the tunes 
which enter eq.(4.14) are not directly measured tunes but the would-have-been tunes in the absence of 
coupling. 
 The exact relation between the ideal and perturbed tunes in the near-resonance case is given in 
Appendix D. For practical purposes we can limit ourselves to the second order correction in the 
coupling strength to obtain 

3/||||1

)(2

||41
2

22
)(

2
���� zz

znQ
w

w

nQ
c n

±

±±±−
±

±

±±
±

−
−≈

−
−≈ ± ,    (4.15) 

where Q± = Qx ± Qy  are combinations of the measured tunes, the bar means averaging with exponential 
exp(in±θ ) over the available range:  

� ±±
±

−
=

2

1
12

1
θ

θ

θ θ
θθ

dzez in .        (4.16) 

4.4 BPM tilts  

When finding generating functions w± from eqs.(4.9) or eqs.(4.10) we assumed the BPM tilts to be 
known. In the interval between two BPMs functions w±  depend on tilts of only these two BPMs. If one 
of the BPMs has large unaccounted tilt it will produce strong oscillations of functions w± in the 
adjacent intervals. By fudging the tilt angles χj, functions w± can be made to vary smoothly over a 
chosen range even if it includes strong couplers. Such a procedure had already been applied to 

FIG. 5 (Color). Absolute values of functions wx,y 
as determined from data with (red and blue) and 
without (magenta and cyan) the coupling 
contribution. 
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functions shown in Fig. 4 in interaction regions and 
some of straight sections. Figure 6 demonstrates the 
effect of fudging of the horizontal BPM tilt on w+ in the 
interval which includes D0 interaction region. The 
largest angle of +4° was found for HC44 monitor. 
 Let us note that a systematic tilt of BPMs in arc 
cells with equal phase advance in both planes 
introduces systematic error in the difference resonance 
generating function of magnitude 

χ
µ
µδ sin

2/sin1
2/sin1

||
+
−≈−w   (4.17) 

where µ is the betatron phase advance per cell. In the 
Tevatron µ ≈ 2π/5 and systematic tilt by 1° would 
produce an error |δw-| ≈ 0.009. With Q- = .01 the 
resulting error in coupling coefficient is fairly small: 

|δc-| ≈ 0.0002. 
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APPENDIX A. LIE-TRANSFORM PERTURBATION THEORY 

In the presence of perturbations we may use eq.(2.18) with the ideal matrix V just as a linear 
transformation of variables. Let us make an important remark here. By making the eigenvectors 
periodic with the help of the exponential factor in eq.(2.13) we ensured the periodicity in θ  of the 
transformed Hamiltonian � and will impose the periodicity condition on all lattice functions that will 
appear in the following – e.g. new Hamiltonian �, generating function � – not always mentioning it. 
 Now let us rewrite the Hamiltonian � introducing the perturbation parameter ε 

),()();,( 10 θεεθ aaa ��� +=         (A.1) 

where �0 is given by eq.(2.22) with the ideal tunes, Q10, Q20, and��1 is given by eq.(2.24) with µ = 2. 
Parameter ε, introduced for later convenience, varies from ε =0 for the ideal lattice to ε =1 for the real 
lattice. 
 Since we assume our system still to be linear (and stable), there should be “true” normal forms, 
A; our goal is to find their relation to the original dynamic variables, a. 
 By saying that the new variables A are “true” normal forms we mean that Hamiltonian, �,  
which governs motion in these variables,  

�
A

A
d
d

∂
∂= S

θ
,          (A.2) 

is of the type (2.22) with new (perturbed) tunes Q1, Q2. 
 Vector A is a linear combination of the original variables with coefficients depending on 
parameters ε and θ: 

FIG. 6 (Color). Absolute value of function w+ 
determined from the second mode seen in the 
horizontal BPMs in the region C36-D28 before 
(red) and after (blue) fudging of BPM tilts. 
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aA ),T( θε=             (A.3) 

It satisfies the boundary condition aA =→0|ε , or, for the transformation matrix T: 

I|T 0 =→ε ,           (A.4) 

I being the identity matrix. It is obvious that 00| �� =→ε . 
 By properly scaling variables A with ε we can ensure matrix T being unimodular (and therefore 
symplectic since A is in normal form for all values of ε); the knowledge of T enables us to find the 
matrix of new eigenvectors Vperturbed=VidealT-1 and, eventually, the perturbed lattice functions. 
 In the linear case under consideration, the Hamiltonians (both original and new) are bilinear 
forms: 

,K
2
1

,U
2
1

AAaa TT == ��         (A.5) 

with symmetric matrices UT=U,  KT=K. Making notice that 

   
A

AaaA
d
d

SK

TTSU)
T

(UTS
T 1

=

+
∂
∂=+

∂
∂= −

θθθ  

we get an equation linking T and K: 

UTSSKT
T −=

∂
∂

θ
           (A.6) 

 Despite its apparent simplicity, eq.(A.6) is not convenient to use since it does not incorporate 
the condition of matrix T symplecticity. To do this we may recall the powerful Lie-transform 
perturbation theory [11]. Specifically, we may consider the transition from the ideal to the perturbed 
system as a “motion” governed by some Hamiltonian, �, with the perturbation parameter ε playing the 
role of time:  

A
A

A
d
d

SWS =
∂
∂= �

ε
,          (A.7) 

where W is the (symmetric) matrix of bilinear form ��: �  = AT WA /2. Then the transformation matrix 
T will be symplectic by construction. Substituting eq.(A.3) into eq.(A.7) we obtain an equation for its 
evolution with “time”ε: 

WTS
T =

∂
∂

ε
            (A.8) 

 Now, equating mixed derivatives of T obtained from eqs.(A.6), (A.8) we arrive at the matrix 
analogue of Dewar’s equation (see e.g. Ref.[14]) 

11 T
U

)(T
K

KSWWSK
W −−

∂
∂−

∂
∂=−+

∂
∂

εεθ
T        (A.9) 

Expansion of this equation in powers of ε leads to the matrix analogue of the Deprit equations. But let 
us first note that if matrix SW(ε) is self-commutative at different values of ε , i.e. if W(ε1)SW(ε2) = 
W(ε2)SW(ε1),  then 
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� ′′=
ε

εεε
0

])W(exp[S)T( d .        (A.10) 

A.1 Power expansion 

Generally we have to resort to power expansion in ε : 
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From eq.(A.8) and the identity TT-1=I we immediately get the recursion relations 
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      (A.12) 

 Substitution of ansatz (A.11) into eq.(A.9) leads to a chain of matrix analogues of the Deprit 
equations (see e.g. Ref.[11]). Here we will not give the general formula but limit ourselves to the first 
three of these equations: 

)),U,(W,(W)UK2,(W)U2K,(WUKWˆ
),UK,(WUKWˆ

,UKWˆ

111112221333

111222

111

−+−+−−=

+−−=

−=

D

D

D

  (A.13) 

where the binary matrix operation (A, B)=ASB-BSA and operator D̂ , )K(W,WWˆ
0+∂≡ θD , were 

introduced. 
 To achieve our goal - find transformation T which brings Hamiltonian � to the form (2.22) - the 
matrices Wn should absorb the offending terms from the r.h.s. of eqs.(A.13). There can be terms which 
are not in the range of operator D̂ , such terms have to be relegated to Kn. Since we excluded the 
resonance case from consideration these only can be the tuneshift terms. 

A.2 Focusing perturbations 

Let us consider an uncoupled lattice and present formulas for only one plane (say, horizontal). The 
matrix of the ideal Hamiltonian is 

��
�

�
��
�

�
==

0
0

UK
0

0
00 iQ

iQ
        (A.14) 

 Now let us introduce quadrupole field errors with gradient 

yB
xB

k δ
ρ ∂

∂= 1
1          (A.15) 
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We have for the perturbing Hamiltonian (the sign of k1 should be reversed for the vertical plane): 

),(
424

2222
0101

2
11

00 ∗−∗ ++== aeaeRk
i

aaRk
i

xRk
i ii φφββ�    (A.16) 

The mean value over the machine circumference of the first term in the r.h.s. of eq.(A.16) (more 
precisely, of its matrix) is not in the range of operator D̂ and therefore constitutes �1: 
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i ππ
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2
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011 4

1
4

� ,     (A.17) 

the leftover being absorbed by �1. Since the effect of the first term can not be resonantly enhanced we 
will ignore it altogether and instead focus on the last two terms in the r.h.s. of eq.(A.16) presented by 
matrix 
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This matrix is well within the range of operator D̂  so it does not contribute to K1. Since we have 
neglected the contribution from the first term we have K1=0. Together with the periodicity condition, 
W1(2π)= W1(0), the first of eqs.(A.13) yields solution for W1: 
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.  (A.19) 

(we recalled definition φ =ϕ -Qθ ). 
 It is easy to see that in perturbation-free regions  

 w(θ )=const×exp(-2iQ0θ ),         (A.20) 

whereas at localized sources of quadrupole errors function w(θ ) exhibits a discontinuity: 

00 2
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2
φφ βθ ii eLk

i
igew −=∆−=∆ ,       (A.21) 

where L is the source length. This fact can be used for identification of perturbing elements. 

A.2.1 Near-resonance case 

 If the tune is close to an integer or a half integer the resonance harmonics n = Integer(2Q0) 
dominates w(θ ): 
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≈     (A.22) 

so that w(θ ) is about constant around the ring by the absolute value. 
 Since the effect of the focusing perturbations is resonantly enhanced the higher order terms in 
the W expansion may become important. Dominance of one (resonance) harmonic in W makes 
eq.(A.10) applicable leading to the result: 
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It is exact when g(θ ) contains only one harmonic from the beginning. Of course, there is a well-known 
exact expression for the tune in this case as well: (Q - n/2)2 = (Q0 - n/2)2 - |g-n|2. 
 Presenting the new eigenvectors (columns of matrix Vperturbed=VidealT-1) in the form (2.25) we 
obtain for the perturbed lattice functions: 
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  (A.24) 

Recalling that in perturbation-free regions arg w =-2Q0θ  + const we retrieve the well-known fact that 
the beta-wave propagates at twice the betatron phase advance: 2φ0 - arg w = 2ϕ0 - const. 
 The beta wave of relative amplitude b = ∆β /β0 (= sinh 2u) increases the average value of β-
function over the beating period as 

2
0 1/ b+>=< ββ          (A.25) 

However, the average value of the inverse β-function, <β0/β>, in the considered approximation does 
not deviate from 1 by more than the relative tuneshift.  

A.3  Coupling perturbations 

In this case the matrix of the perturbing Hamiltonian is: 
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being driving terms of linear sum and difference resonances; Un = 0 for n ≥ 2. U1 is in the range of 
operator D̂ , correspondingly K1= 0. 
 The matrix of the first-order generating function is easily found from eq.(A.13) to be  
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with 
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In perturbation-free regions these functions are constant by absolute value: w±(θ ) = const × 
exp[-i(Qx±Qy)θ ]; at a localized coupling source they exhibit a discontinuity: 

R
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± −=∆          (A.30) 

where L is the coupler length. This fact can be used for location of strong couplers. 
 When the tunes are close to either of the linear coupling resonances, ∆± = Qx ± Qy - n±  ≈0, the 
corresponding function (w+ or w-) is dominated by the resonance harmonic 
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and is about constant around the ring by the absolute value. 

A.3.1 Higher order effects 

When |w± | is not small compared to unity (due to either strength of coupling or closeness to a 
resonance) the higher order effects may become important. Let us have a look at the second and third 
order generating functions W2, W3. 
 Contribution from W1 to the r.h.s. of the equation for W2 is 
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The off-diagonal elements of the diagonal blocks render (upon averaging) the second-order tuneshifts: 
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whereas the diagonal elements are responsible for the beta-beating which can be described by diagonal 
blocks in W2 of type (A.19) with 
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 For the second-order beta-beating to be noticeable the tunes should be close to the crossing 
point of linear resonances: two one-dimensional half-integer resonances and two coupling resonances 
(sum and difference). Such working points are often used in colliders since they minimize the beam-
beam tuneshifts. 
 If the working point is not close to both coupling resonances simultaneously we may neglect the 
contribution from W2 to higher order terms (but keep itself). Introducing matrix 
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and ignoring the dependence of |w±| on θ  we obtain 
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where 
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 Writing the new eigenvectors (columns of matrix Vperturbed=VidealT-1) in the form (2.21) we 
obtain for the perturbed lattice functions (ideal lattice is assumed to be uncoupled): 
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 For function ω  we have in the considered approximation 

κω 2sin= .          (A.40) 

Comparing with eq.(2.23) we obtain for Edwards-Teng’s “symplectic rotation” angle Φ = κ. We see 
that this angle becomes imaginary when the sum resonance dominates ( | w+ | > | w- | ) in agreement 
with Y.Luo’s results [6]. 
 
APPENDIX B. TUNE EVALUATION FROM TBT DATA 

Let us first introduce continuous Fourier transform (CFT) and its inverse: 
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 For harmonic oscillations, xn+1 = a cos(2πν0n +ψ), the transform is 
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where  
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 Discrete Fourier transform picks up X(ν) 
values at ν = νk ≡ (k -1)/N (see Fig.7). The simplest 
estimate of the tune (1-point formula) is ν0 = νk with k 
corresponding to the maximum value of  Xk = |X(νk)|. 
The error of such estimate is ~1/N. 
 One may try to fit the TBT spectrum using 
model spectral function  
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Since the model contains just two parameters, a and 
ν0, just two Fourier components Xk are necessary. Choosing the largest two and assuming νk-1 < ν0 ≤ νk 
we obtain the 2-point formula first derived by E.Asseo (see Ref.[15]): 
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 Even in the case of harmonic oscillations this formula is not exact since model (B.4) does not 
include the contribution from the mirror-symmetric peak, the error being ~1/N2. The accuracy may 
become significantly worse in the presence of alien spectral lines (e.g. synchrotron sidebands) and 
random noise. For instance, if their contribution is large enough to make X k+1 higher than X k-1 in the 
situation depicted in Fig.7 then the calculated tune will lie on the wrong side of νk resulting in an error 
~1/N. 
 To reduce sensitivity of the method (called interpolated FFT) to the noise one may try to use 
more points, e.g. three with the highest peak in the middle. Since only two points are really necessary  
there is no unique expression; we offer the following formula 
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 Let us compare its precision with the 2-point formula in the case of signal contamination with 
an alien mode assuming for simplicity ν0 = νk ≡ (k -1)/N: 

)2cos()2cos(1 nnx akn πνεπν +=+ .       (B.7) 

Retaining only the first order correction in ε we get for the tune error δν0 from eq. (B.5) 
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where ∆=νa - ν0, while from the 3-point formula (B.6) we obtain 

FIG. 7. Schematic of TBT spectrum and sampling 
points for discrete Fourier transform. 
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independently of ∆. With typical distance to the alien lines ∆=10-3 ÷10-2 the error of the 2-point formula 
can be by one-two orders of magnitude larger than that of the 3-point formula. 
 Unfortunately, the 3-point algorithm fails as well when the sign of X k+1 - X k-1 is reversed by 
noise. So the most reliable method of tune evaluation is finding the maximum of CFT. 

APPENDIX C. ERRORS DUE TO RANDOM NOISE  

Let us consider the effect of random uncorrelated errors (e.g. LSB) 

mnmnnn nax δσξξξψπν 2
101 ,)2cos( =++= ++ ,     (C.1) 

on the precision of determination of tune, amplitude and phase by continuous Fourier transform. For 
tunes sufficiently far from half-integer values the second term in eq.(B.2) can be dropped and we have 
at small tune deviations ∆=ν - ν0 

�
=

−− ∆−−+∆+−−∆−−=
N

n
n

nii nie
N

NN
Nie

a
X

1

)1(22
22

])1(21[
1

]
3

)132(
)1(1[

2
)( 0 ξπππν νπψ .  (C.2) 

Maximum of |X(ν)| is reached at 
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so the r.m.s. tune error is 
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 R.m.s. errors in amplitude and phase of X(ν0) are 
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 Errors due to random noise decrease with the number of turns N much slower than errors due to 
alien modes, Hanning windowing does not reduce them. 
 
APPENDIX D. TUNES OF COUPLED OSCILLATIONS 

In the case when functions C±(θ ) defined in eq.(A.27) contain only one harmonic each: 

θθ ±−
±± = inecC )( ,         (D.1) 

it is possible to find the coupled tunes exactly. 
 Introducing new variables 
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we get from eqs.(2.21),  (2.24)  and (A.26) equations of motion with constant coefficients 
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where qx,y =Qx,y0 - (n+ ± n-)/2.  
 Eqs.(D.3) and their complex conjugates present a system of four equations for the components 
of vector b = (bx, bx

*, by, by
*). Finding the particular solutions we may ignore the requirement of bn, bn

* 
being complex conjugates but satisfy it later in the global solution. 
 Looking for b ~ exp(iqθ ) we find four eigenvalues  
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When either c+ = 0 or c- = 0 we obtain well known results 
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 The effect of c+ on the tune difference (as well as that of c- on the tune sum) is small, 
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and can be ignored in practical calculations as has been done in eq.(4.15) 
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